心得体会是我们在学习中不断积累和提升自己的重要方法和手段,通过心得体会,我们能够更好地应对工作中的挑战和压力,以下是好学范文网小编精心为您推荐的数学考研心得推荐8篇,供大家参考。
数学考研心得篇1
1、点式学习
数学知识由一系列的基本定义、基本定理、基本方法组成,这些基本的知识点两两结合,三两结合就能构成不同难度,不同层次的考题,但追根究底,若没有对这些小知识点透彻的学习是不可能漂亮求解复杂问题的。所谓“不积跬步无以至千里”就是道理所在。如何才能深刻理解这些知识点的内涵呢?
一般也需要分三步:一、这个点在讲什么?二、这个点揭示了什么?三、这个点如何使用?例如,中值定理里有一个拉格朗日中值定理,从以上三个层次理解就是:一、讲切线与两端点连线的问题;二、揭示了导数与函数的内在关系;三、可以用来沟通函数与导数,出现在不等式证明及中值定理证明题目中。
2、线式学习
在掌握好第一步单个知识点的学习后,就好比我们手里有有一把珠子,要想便于携带需要把这些散珠穿起来,这就是线式学习。那么这条穿珠子的线是什么呢?我认为应该是各章节之间的联系。至于如何找到这条线,其实不难,大家手头的教材的编排都是按照一定的逻辑关系进行的,我们只需深刻理解教材的编排方式就可以将珠子穿起来了。当然,每个人的水平又是不同的,有人理解的深刻,有人理解就浅见一些,不过,只要多下功夫,“读书百遍,其意自现”。
3、面式学习
过线式学习,我们已经把知识做成了一根根线,现在需要把这些线织起来。线与线之间的联系就需要站高一些来看了,各个章节是要解决什么问题,综合起来又是要解决什么问题,这需要较高的.抽象综合能力,分析问题的能力。
例如,从整体上看高等数学,首先研究函数极限连续,那这是在说明高等数学研究的对象及使用的工具,以极限的手段研究连续函数;后续研究导数及其应用以及中值定理,这是进入一元函数微分学的,一元函数微分学学清楚了后边多元微分的学习就可以轻松进入,对比学习即可;再者就是一元函数积分学的学习,这是整个积分学的基础,后续多元的积分学,包括二重积分、三重积分、曲线面积分从本质上说要想计算出来都要转化成一元函数的积分来处理等。
数学考研心得篇2
考研数学基础差考生暑期复习建议
1、函数、极限与连续。主要考查极限的计算或已知极限确定原式中的常数、讨论函数连续性和判断间断点类型、无穷小阶的比较、讨论连续函数在给定区间上零点的个数或确定方程在给定区间上有无实根。求分段函数的复合函数;求极限或已知极限确定原式中的常数;讨论函数的连续性,判断间断点的类型;无穷小阶的比较;讨论连续函数在给定区间上零点的个数,或确定方程在给定区间上有无实根。这一部分更多的会以选择题,填空题,或者作为构成大题的一个部件来考核,关键是要对这些概念有本质的理解,在此基础上找习题强化。
2、一元函数微分学。主要考查导数与微分的定义、各种函数导数与微分的计算、利用洛比达法则求不定式极限、函数极值、方程的的个数、证明函数不等式、与中值定理相关的证明、最大值、最小值在物理、经济等方面实际应用、用导数研究函数性态和描绘函数图形、求曲线渐近线。求给定函数的导数与微分(包括高阶导数),隐函数和由参数方程所确定的函数求导,特别是分段函数和带有绝对值的函数可导性的讨论;利用洛比达法则求不定式极限;讨论函数极值,方程的根,证明函数不等式;利用罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒中值定理证明有关命题,此类问题证明经常需要构造辅助函数;几何、物理、经济等方面的最大值、最小值应用问题,解这类问题,主要是确定目标函数和约束条件,判定所讨论区间;利用导数研究函数性态和描绘函数图形,求曲线渐近线。
3、一元函数积分学。主要考查不定积分、定积分及广义积分的计算、变上限积分的求导、极限等、积分中值定理和积分性质的证明、定积分的应用,如计算旋转面面积、旋转体体积、变力作功等计算题:计算不定积分、定积分及广义积分;关于变上限积分的题:如求导、求极限等;有关积分中值定理和积分性质的证明题;定积分应用题:计算面积,旋转体体积,平面曲线弧长,旋转面面积,压力,引力,变力作功等;综合性试题。这一部分主要以计算应用题出现,只需多加练习即可。
4、向量代数和空间解析几何。计算题:求向量的数量积,向量积及混合积;求直线方程,平面方程;判定平面与直线间平行、垂直的关系,求夹角;建立旋转面的方程;与多元函数微分学在几何上的应用或与线性代数相关联的题目。这一部分的难度在考研数学中应该是相对简单的,找辅导书上的习题练习,需要做到快速正确的求解。
5、多元函数的微分学。主要考查偏导数存在、可微、连续的判断、多元函数和隐函数的一阶、二阶偏导数、多元函数极值或条件极值在与经济上的应用、二元连续函数在有界平面区域上的最大值和最小值。此外,数学一还要求会计算方向导数、梯度、曲线的切线与法平面、曲面的切平面与法线判定一个二元函数在一点是否连续,偏导数是否存在、是否可微,偏导数是否连续;求多元函数(特别是含有抽象函数)的一阶、二阶偏导数,求隐函数的一阶、二阶偏导数;求二元、三元函数的方向导数和梯度;求曲面的切平面和法线,求空间曲线的切线与法平面,该类型题是多元函数的微分学与前面向量代数与空间解析几何的综合题,应结合起来复习;多元函数的极值或条件极值在几何、物理与经济上的应用题;求一个二元连续函数在一个有界平面区域上的最大值和最小值。这部分应用题多要用到其他领域的知识,在复习时要引起注意,可以找一些题目做做,找找这类题目的感觉。
6、多元函数的积分学。包括二重积分在各种坐标下的计算,累次积分交换次序。数一还要求掌握三重积分,曲线积分和曲面积分以及相关的重要公式。二重、三重积分在各种坐标下的计算,累次积分交换次序;第一型曲线积分、曲面积分计算;第二型(对坐标)曲线积分的计算,格林公式,斯托克斯公式及其应用;第二型(对坐标)曲面积分的计算,高斯公式及其应用;梯度、散度、旋度的综合计算;重积分,线面积分应用;求面积,体积,重量,重心,引力,变力作功等。
7、微分方程。主要考查一阶微分方程的通解或特解、二阶线性常系数齐次和非齐次方程的特解或通解、微分方程的建立与求解。差分方程的基本概念与一介常系数线形方程求解方法。求典型类型的一阶微分方程的通解或特解:这类问题首先是判别方程类型,求线性常系数齐次和非齐次方程的特解或通解;根据实际问题或给定的条件建立微分方程并求解;综合题,常见的是以下内容的综合:变上限定积分,变积分域的重积分,线积分与路径无关,全微分的充要条件,偏导数等。
数学考研心得篇3
数学复习大概分六个阶段。
第一阶段:在刚开始看书时,因为数学是大一学的,那时还是比较认真的,所以数学学的“相对”的好,而线代和概率一般在大二学,那时学习的热情几乎没有,以过关为目的,没认真的学习,所以掌握的都不是很好,在数学复习的刚开始,你感觉高数相对于线代和概率要容易的许多,也比较喜欢数学,看到线代和概率头都有点晕,更不想做了。这个阶段很正常,放好心态,继续努力,可以先啃课本,课本上的定理都背熟了,都自己推理的熟了,也就不是很难了,第一阶段是在考研复习前2月会有的心态。这两个月好好调整好心态,不要感觉学习数学像是在炼狱一般,那样你就郁闷了,最好是这样想,你不会大家都一样,其实对大多数人是一样的呢,所以所有的朋友门放平心态喽。
第二阶段:在第一轮数学复习过后(复习全书看过一遍后),此时你已经掌握了许多解题的方法,但这时,你喜欢的仍是高数题目,害怕线代和概率,因为你看是看懂了,却没有思路自己做,或许多的定理知道,但做题时想不起来,最坏的情况是看到线代和概率头范涨,很想不看了去打游戏。这时后,你就不可以在做题目了,因为线代概率是很有规律的,可以说是比较死的几类题型。你当前的任务是把线代和概率的课本上的定理熟记,然后还要知道原理的推导。把线代和概率的书看透了(书上的例题和定理和定理的证明),那么你第二阶段也快过去了,恭喜你,你数学复习到了第三阶段。
第三阶段:感觉高数的题目有的是没思路的,而线代和概率已经不是原来那样的难了,也相对的容易起来,这时拿到题目的感觉是会了,但做不出来,就是要把课本放在旁边,看到定理解答,此时你拿到题目知道了怎么下手,就是还有的定理不是很熟悉,最郁闷的是,你刚把线代和概率的课本看完了,感觉你什么都懂了,什么都会了,拿到题目,你却又忘记了书上的很多定理,这种情况就好好复习,好好背诵并推理定理,熟能生巧嘛。第三阶段最大的特点是:高数,线代,概率绝大多数的题目都会了,还有一小点不是很熟悉,总体感觉良好,此时你做真题大概可以考到100——110,恭喜你,第三阶段就过去了,第四阶段来了。
第四阶段:随着复习的继续,你对线代和概率的手感越来越好(就是多练习),最后已经感觉到线代和概率的题目很死了,没有什么技术含量,看到题目马上就有了大概的解题思路,而高数有证明题,不等式的证明,应用题却有时不好把握,现在对概率和线代十分的喜欢,对高数却有点害怕,害怕有你不会的题型,这个阶段是在第二轮复习结束的情况下会有的,此时你对考研数学有底了,不是十分的害怕,此时你要去考试能考110——130之间,此时你也要努力进入第五阶段。
第五阶段:这个阶段,你已经把数学的薄弱点强化了,对所有的题目都知道了大概的思路和方法,可以稍微想想考的是什么,有什么样的陷阱,方法怎么做最快,最方便。此时你拿到试卷的感觉是,所有的题目我都会了(大概的思路是对的),接下来就是考计算量的。此阶段你除了继续强化你的弱点外,还要做大量的练习训练自己的计算量。此阶段你心里很舒服了,看到数学可以笑这面对了,数学可以说是比较容易的了,在考研里,数学的地位你已经掌握了,接下来的重点不在是数学了,因为第3轮数学复习结束,时间也到了11月12月了,此时的重点已经是专业课和政治了,但注意好了,每天数学都要做,手感也很重要的,建议此阶段数学要保证每天4小时,因为数学要生手了,你会没有信心的,此时也是考研李的瓶颈阶段,要平静的渡过去。此时你要参加考试可以考:120——140之间了,不要放下数学呢。
终极阶段:对于做了大量练习,和数学模拟试题的同学,此时对数学的感觉是,拿到一张卷子,不用思考了,拿到题目就知道证明做,也就是很多达人说的“做数学不是脑力劳动,而是体力劳动”这样的人是可以考140+的,数学达人多的是。你要达到这个境界时,你就是数学达人了。
天道酬勤,虽然很多辅导老师都会指出拒绝题海战术,对于数学,我们不得不承认,只用通过大量做题、反复总结才能找对做题的“感觉”。希望同学们在强化阶段戒骄戒躁,不要急于求成,只要坚持不懈,会有成功的那天!
数学考研心得篇4
一、考研数学复习中出现的问题:
数学经过前一个阶段的强化复习,对各个知识点都有了大概的了解,但由于知识点分散、涉及面广而多,学员们通常是看到哪,前面部分又忘光。大部分知识点还很生疏,没有形成完整的系统。只能是做题较多的部分,印象会深刻些。由于我们在基础阶段的学习中,难以将所学数学知识系统化,导致当一门课程复习结束后,另一门课程的大部分知识被遗忘。这些情况都是在该阶段复习数学中会出现的普遍性问题。既然无法逃避,就正面解决。既然没办法全记住,就各个击破。我们在强化阶段要做的就是把这些知识点通过做题、改题、总结的形式巩固起来。
二、考研数学复习时间安排
这段时间可能不如暑假那么富足集中,但要坚信时间是挤出来的,要在有限的时间内创造更多的价值,那就必须要制定合理的时间安排表。建议每天保持三至四个小时的数学学习时间,对于具体学习时间安排在何时,同学们可以自由决定,但学习时间必须得到保证。将时间安排在上午或者晚上,因为上午精神旺盛,思维敏捷,在这段时间内,学习数学将取得很好的效果,同时晚上对所学知识进行回顾训练,进一步强化记忆,使得对知识的掌握更加牢固。数学的复习是一项长期工程,关键在于恒心和坚持,只有如此,才能取得最后的成功,因此,希望你能严格要求自己,能够保证每天都完成相应的学习任务。
在本阶段,由于政治的学习时间要增加,你可能会觉得无法均衡花在各科上的时间。但请注意数学在满分500分中的比重大,所谓“得数学者,得天下”,无论时间多么紧张,一定要保证每天3—4小时复习数学。每一轮复习保证这样一个进度:高等数学用20天时间看完,线性代数用7天,概率论用7天。
数学做题的具体要求是:求稳而不求多、不求快,力争做到做完此阶段应该做完的题,对每个题的知识点和相应的题型都有一定掌握,要多思考,做到举一反三。由于每个同学的复习情况不完全一样,但是要提醒你的是数学复习一定要养成一个好的习惯,拿到的数学题一定要有始有终把它算出来,这是一种计算能力的训练。
近几年考研数学的一个命题趋势是:难题偏题怪题没有了,取而代之的是基础题型,至少占有60%,中档题占30%,难题大约占有10%,而对于中档题或者较难题,如果对知识点掌握扎实熟练的话,那么难题在此也不是很难了。所以现阶段仍是要抓基础,巩固基础,争取在强化阶段有所突破。
数学考研心得篇5
一、随机事件与概率
重点难点:
重点:概率的定义与性质,条件概率与概率的乘法公式,事件之间的关系与运算,全概率公式与贝叶斯公式
难点:随机事件的概率,乘法公式、全概率公式、bayes公式以及对贝努利概型的事件的概率的计算
常考题型:
(1)事件关系与概率的性质
(2)古典概型与几何概型
(3)乘法公式和条件概率公式
(4)全概率公式和bayes公式
(5)事件的独立性
(6)贝努利概型
二、随机变量及其分布
重点难点
重点:离散型随机变量概率分布及其性质,连续型随机变量概率密度及其性质,随机变量分布函数及其性质,常见分布,随机变量函数的分布
难点:不同类型的随机变量用适当的概率方式的`描述,随机变量函数的分布
常考题型
(1)分布函数的概念及其性质
(2)求随机变量的分布律、分布函数
(3)利用常见分布计算概率
(4)常见分布的逆问题
(5)随机变量函数的分布
三、多维随机变量及其分布
重点难点
重点:二维随机变量联合分布及其性质,二维随机变量联合分布函数及其性质,二维随机变量的边缘分布和条件分布,随机变量的独立性,个随机变量的简单函数的分布
难点:多维随机变量的描述方法、两个随机变量函数的分布的求解
常考题型
(1)二维离散型随机变量的联合分布、边缘分布和条件分布
(2)二维离散型随机变量的联合分布、边缘分布和条件分布
(3)二维随机变量函数的分布
(4)二维随机变量取值的概率计算
(5)随机变量的独立性
四、随机变量的数字特征
重点难点
重点:随机变量的数学期望、方差的概念与性质,随机变量矩、协方差和相关系数
难点:各种数字特征的概念及算法
常考题型
(1)数学期望与方差的计算
(2)一维随机变量函数的期望与方差
(3)二维随机变量函数的期望与方差
(4)协方差与相关系数的计算
(5)随机变量的独立性与不相关性
数学考研心得篇6
随着近年来“考研热”的持续升温,已有越来越多的“落榜生”选择二次或者多次考研。考生选择再战考研之前,一定要对自己的情况做综合分析,并不是所有考生都适合二次或者多次考研。一般情况下,有三种考生是适合考研的:
第一,自身所学专业限制性很强、就业面很窄、本科学校竞争力很弱的考生,这类考生亟须通过考研来增加求职竞争筹码;
第二,不着急就业、想继续深造,但因为语言或者经济等原因,只能选择在国内读研的考生;
第三,名校情结非常浓重、而且自我约束力比较强的考生。
考生有过一次考研失败的经历后,往往再次考研时目的性非常明确,但是这并不是决定考研成功的最关键因素,因此,如何提高成绩最为必要。
对于这类考生,建议复习时不妨分为五个阶段:第一阶段做基础知识回顾;第二三阶段强化训练;第四阶段系统复习;第五阶段冲刺补考。当然,考生要根据个人情况安排适合自己的复习时间段。小编提醒大家,调剂成功的同学不在失利考生范围内,最全的调剂攻略戳。
考研落榜步入职场
有机构曾对大学生毕业后的流向做了一个统计,其中94%以上毕业后会进入商界、3%左右会进入政界、2%左右会在学术界发展,最后成为国家科学研究与创造前沿的学者。因此,对于考研失利的考生来说,大部分都会转入职场。
在求职大军中,考研失利的学生占了很大一部分比例。一些学生在经历过考研失利的“重创”后,甚至会在求职中表现出一些不自信。作为成年人,不要被这点失败给吓蒙了,要知道,你的职业生涯还没开始呢,比考研失利更大的挫折可能还在后头。
应届生在求职时,既不能失去自信,又不能失去客观、理性。应届生求职时应合理展现自己的价值,即使有些预期短时间内难以达到,也完全可以通过科学的职业规划一步步实现。
很多企业对考研失利的学生并不排斥,求职者如果能把考研坚持下来了,说明其有一定的恒心和毅力,这也是他们非常看重的。
数学考研心得篇7
在考研复习的第一阶段,考研数学的复习主要围绕高等数学、线性代数、概率论与数理统计三个部分的重要知识点进行复习,尤其是高等数学的重要知识点,因其往往占有很大分值,应作为重中之重。综合性试题和应用题,在初步复习时便可以不作为强化重点,而应逐步进行训练,积累解题思路,同时还可以帮助提高各个知识点的理解和消化。数学考试就是解题,象基本概念、基本公式、基本结论等也只有在反复练习中才会真正巩固。因此,考研数学要拿高分,前后不做上千道题是不行的,除此以外没有什么“速成”之类的旁门左道。
好的解题方法简便快捷,与笨方法往往有天壤之别,平时要注意学习、总结。不要钻偏题、怪题。考研不是数学竞赛,不会出现这类题目,因此完全没必要浪费时间。要及时寻求帮助。遇到比较难的题目,自己独立解决确实能显著提高能力,但复习时间毕竟有限,一定要避免一时性起,盯住一个题目做一个晚上的冲动。要充分借助老师、同学的帮助,将题目弄通搞懂、下次自己会做即可,不要耽误太多时间。
高等数学想要拿高分,首先是按照大纲对数学的基本概念、基本方法和基本定理准确把握。如果对数学中的基本概念、方法和原理不清楚,解题时肯定会碰到各种各样的问题,容易丢失一些基本分。其次是提高解题能力,尤其是解综合性试题和应用题能力。复习时考生要搞清有关知识的纵向、横向联系,形成一个有机的体系。解应用题一般是在理解题意的基础上建立数学模型,这种题目现在每年都考,考生需要平时进行强化训练。最后是重视历年试卷。高等数学部分试题重复率还是比较高的,历年试卷更能反映出考研数学的出题思路和出题重点,通过对考研试题的类型、特点、思路进行系统的归纳总结,并做一定数量习题,才能提高复习效率和解题能力。要想在数学考试中取得好成绩,一定要做一定数量的题目,通过做题才能更准确、更熟练的一些公式、结论的用法,并且题目做的多了,才有可能在考场上迅速形成做题思路。(考|研教育网整理)另外,题目做的多了,才有可能提高解题速率和正确率。选择题和填空题在数学考卷中所占的比重很大,这些题目的解答往往会“一失足成千古恨”,稍不留神,一步做错就全军覆没。不能说只要考场上认真,仔细地做题就不会有“会做但做错”的情况出现,其实有些看似由于粗心引起的错误是由于考生之前没有碰到过这种错误,考生时大脑中意识不到要注意这些问题,所以这种错误是不能仅仅认真、仔细就可以避免得了的。
因此我们在复习高等数学的.时候要注意:首先,熟悉和掌握教材中的基本概念和定理,清楚各个考点,形成一个知识体系。有了这个基础,整个数学的复习都会比较轻松,并取得事半功倍的效果。然后是整理数学班的笔记,熟悉掌握笔记中所讲的出题点和各种解题规律,这样就可以进入做题状态了。如果由于时间的限制,不可能从量上进行突破,因此就必须提高做题质量。每做完一题后,就要总结其所覆盖的知识面并且归纳其所属题型,做到举一反三。以后碰到类似的题目,就跳过不做了。这样不仅可以做到熟练运用相关知识点和解题方法,还可以少做大量无用功,节省很多复习时间,从而大大提高了复习效率。
此外,研究真题是各科复习过程中不可或缺的一个环节,数学自然也不例外。数学真题的复习要按章节进行,就是找出一份已经分好类的历年真题集。这样,在做真题的过程中,就可以做到以一年代替历年,即在历年考试中大多数的题型都是类似地重复地出现,因此没必要花太多时间在每年类似的题上。而且,在研究完历年真题后,自己可以很清楚历年考试出题的重点和难点,使冲刺阶段的总结性复习更有针对性和目的性。
数学考研心得篇8
▶踩点得分
对于同一道题目,有的人理解得深,有的人理解得浅,有的人解答得多,有的人解答得少。为了区分这种情况,阅卷评分办法是懂多少知识就给多少分。也叫踩点给分,即踩上知识点就得分,踩得多就多得分。
因此,对于难度较大的题目可以采用这一策略,其基本精神就是会做的题目力求不失分,部分理解的题目力争多得分。因此,会做的题目要特别注意表达准确、逻辑清晰、书写规范、语言严谨,防止被“分段扣点分”。
▶大题拿小分
有的大题难度比较大,确实啃不动。一个聪明的解题策略是,将它们分解为一系列的步骤,或者是一个个小问题,先解决问题的一部分,能解决多少就解决多少,能演算几步就写几步。
帮帮提醒研研们,尚未成功不等于失败,特别是那些解题层次明显的题目,或者是已经程序化了的方法,每进行一步得分点的演算都可以得分。最后结论虽然未得出,但分数却已过半。
▶以后推前
考生在解题过程中卡在某一步是很常见,这时可以换一种思路,也许就会柳暗花明又一村。同学们可以把卡壳处空下来,先承认中间结论,再往后推,看能否得到结论。如果不能,说明这个途径不对,立即改变方向;如果能得出预期结论,就回过头来,集中力量攻克这一“卡壳处”。
▶跳步解答
由于考试时间的限制,“卡壳处”来不及攻克了,那么可以把前面的写下来,再写出“证实某步之后,继续有……”一直做到底,这就是跳步解答。也许,后来中间步骤又想出来,这时不要乱七八糟插上去,可补在后面,“事实上,某步可证明或演算如下”,以保持卷面的工整。若题目有两问,第一问想不出来,可把第一问作“已知”,“先做第二问”,这也是跳步解答。
▶以退求进
以退求进是一种重要的解题策略,也是做题的最高境界。如果你不能解决所提出的问题,那么可以从一般退到特殊,从抽象退到具体,从复杂退到简单,从整体退到部分,从较强的结论退到较弱的结论。
总之,退到一个能够解决的问题。为了不产生“以偏概全”的误解,应开门见山写上“本题分几种情况”。这样,还会为寻找正确的、一般性的解法提供有意义的启发。这个技巧需要同学们做题做到一定境界来体会,如果可以做到这一步,那么什么难题都不是难题了。
学习中要积极学习借鉴他人的成功经验,才能多快好省的提高自己。大家可以根据自己的需要灵活应用,不断优化改进自己的答题方法和技巧。
考研数学强化复习任务及做题指导
强化阶段的主要任务是归纳题型,总结方法,因为题型的重复率的确太高了。
为了达到这个目的,可以通过两种途径来实现这个目标,一是通过看辅导书自己来训练,另外就是配合上强化班,在强化班上,我们会把考研常考题型系统归纳,并且针对每种总结出相应的常规方法,培养大家对常规题型的解题能力。
在做题的时候,有意识地加强练习做题的感觉,对复习效果会事半功倍,在做题时可以从以下几个方面入手:
第一,读题
做题要从题目的叙述开始。拿到一个题目,做题的第一步是要仔细阅读题目,把握题目的主要含义。阅读题目直到即使不看题目,也能记住题目的意思。
第二,找出切入点
仔细考虑题目的各主要部分,将它们以不同的方式进行组合,再调动已有知识,寻求其与题目之间的联系,试着认清题目中所隐含的你熟悉的东西。
第三,分析题目要求
分析下题目所求需要哪些条件,然后寻找这些条件与第二问找出的思路的关系,这样就能找到解题点了!
如果你有意识地使用这种方式解题,那么一段时间过后,你会发现自己的解题能力、解题技巧、解题速度与正确性都会大大提高。
会计实习心得体会最新模板相关文章: