教案为教师提供了反思的契机,有助于优化未来的教学规划,教案的准备可以帮助教师设计更具吸引力和趣味性的课堂活动,好学范文网小编今天就为您带来了数与运算的教案通用8篇,相信一定会对你有所帮助。

数与运算的教案篇1
教学目标
知识与技能
1、通过观察发现,掌握加法交换律的意义。
2、学会用自己喜欢的方式表示加法交换律,初步感知代数思想。
3、会运用加法交换律验算加法。
过程与方法
1、经历加法交换律的发现过程,体验观察比较,举例论证,总结归纳的学习方法。
2、经历加法交换律的应用过程,体验数学知识间的联系和它的广泛应用性。
情感、态度与价值观
让学生感受发现知识的快乐,激发学生的兴趣,感受数学与生活的联系。培养学生学数学、用数学的乐趣。
教学重难点
教学重点:理解并掌握加法的交换律。
教学难点:能根据实际情况,在计算式灵活应用加法运算律。
教学工具
多媒体、板书
教学过程
创设情境,探究新知
李叔叔准备骑车旅行一星期,他今天上午骑了40 km,下午骑了56千米,李叔叔今天一共骑了多少千米?
(1)理解题意
求李叔叔今天一共骑了多少千米,就是求上午和下午一共骑了多少千米?
用加法:40+56或56+40
师:今天我们就来学习一下加法运算的定律。
板书:加法运算定律
(2)解决问题
40+56=96(km)或56+40=96(km)
(3)观察算式,发现定律
两道算式的得数相同,所表示的都是李叔叔今天一天骑的路程,因此两道算式之间可用等号连接,即40+56=56+40
观察40+56=56+40,发现,等号左、右两边的加数相同,只是交换了位置,但结果不变。由此可以得出结论:交换加数的位置,和不变。
(4)验证定律
是否所有的加法算式交换加数的位置,和都不变呢?可以举例验证。如:
0+200=200;200+0=200所以0+200=200=0
11+78=89;78+11=89所以11+78=78+11
发现:任意两个数相加,交换加数的位置,和不变,这就是加法的交换律。
(5)用字母表示定律
在数学当中通常用字母表示定律,若用a,b分别代表两个加数,则加法交换律就可以表示为a+b=b+a(a,b代表任意数)。用字母表示更加直观、方便。
板书:加法交换律:a+b=b+a
归纳总结1:两个加数交换位置,和不变,用字母表示为:a+b=b+a。
随堂练习:
小红有24支水彩笔,小刚有16支水彩笔,小红和小刚一共有多少支水彩笔?
答案:24+16=40(支)或者16+24=40(支)
探究新知2:加法结合律
情境导入:
问李叔叔这三天一共骑了多少千米?
1、理解题意
师:要求三天一共骑了多少千米,就是求第一天所骑的加上第二天再加上第三天所骑的所有路程是多少,列式:88+104+96
2、解答:
方法一:按从左往右的顺序:
88+104+96
= 192+96
= 288(千米)
方法二:观察算式中96+104正好等于200,所以可以先把后两个数加起来,再加上他们的和。
即:88+104+96
= 88+(104+96)
= 88+200
= 288(千米)
答:李叔叔这三天一共骑了288千米。
3、发现规律
观察两种解题方法,发现:一是先把前两个数相加,再加上第三个数,方法二是先把后两个数相加,再和第一个数相加,他们的计算结果相同,因此,
可以写成等式(88+104)+96=88+(96+104)
归纳总结2:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变,这个叫加法结合律。
4、用字母表示定律
如果用a,b,c表示任意三个数,那么加法结合律可以表示为:(a+b)+c=a+(b+c)
板书:加法结合律(a+b)+c=a+(b+c)
活学活用:
有三块布,第一块长68米,第二块长59米,第三块长41米,那么三块布一共有多长?
68+(59+41)
= 68+100
= 168(米)
答:三块布一共有168米
探究新知3:加法中的简便运算
下面是李叔叔后四天的行程
1、理解题意
师:要想求李叔叔后四天还要骑多少千米,只要把后四天所有的路程加起来就行了,列式为:115+132+118+85
2、观察算式特点
师:同学们,仔细观察发现,115与85能凑成整百数,132与118能凑成整数,因此用加法交换律和加法结合律就能把式子改写为:
115+132+118+85
= 115+85+132+118
加法交换律=(115+85)+(132+118)
加法结合律
= 200+250
= 450
3、解答
115+132+118+85
= 115+85+132+118
=(115+85)+(132+118)
= 200+250
= 450(千米)
归纳总结:
在加法算式中,当某些数可以凑成整十,整百数或者多个相同数时,运用加法交换率或者加法结合律改变式子的运算顺序,可以使运算更方便。
活学活用:
丁杰看一本故事书,第一天看了62页,第二天看了93页,这时还剩下138页没有看,这本故事书一共有多少页?
答案:62+93+138
=(62+138)+93
= 200+93
= 293(页)
答:这本故事书一共有293页。
探究新知4:连减的简便运算
情境导入
一本书一共有234页,还有多少页没看?
1、理解题意
师:已知总页数是234页,减去昨天和今天看的,就是剩下的。
2、列式子
解法一:(1)今天看的66+34=100(页)
(2)剩下的234—100=134(页)
解法二:从总页数中减去今天看的34页,再减去昨天看的66页,
剩下的就23466=134(页)
3、比较发现
比较以上解法得数是一样的,可知:从一个数中连续减去两个数,也就相当于从被减数中减去两个减数的和,在连减算式中任意交换减数的位置,差不变。
即:a—b—c=a—(b+c);a—b—c=a—c—b
活学活用:
妈妈拿100元去超市购物,买蔬菜花了26元,买水果花了24元,还剩多少钱?
答案:10024=50(元)
拓展提升:
1、计算:1+2+3+4+5......+48+49+50
师解析:
方法一:观察这组数据发现,1+50=51,2+49=51,3+48=51…、25+26=51
50个数相加,两两结合为25组,每组的和都为51,这样可以算出答案:51×25=1275
方法二:如果把50个数倒过来写,分别相加,就是50个51相加再除以2,即是答案。
即:1+2+3+4…、+48+49+50
=(1+50)×(50÷2)
=1275
归纳总结:解决问题要动脑,这样会找到多种解决问题的方案,解答时要选择一个最简便的方法。
举一反三:
用简便方法计算:199999+19998+1997+196+95
答案:199999+19998+1997+196+95
= 200000+20000+20xx+200+100—(1+2+3+4+5)
= 222300—15
= 222285
归纳小窍门:当算式中的数字较大时,可以利用估算的思路,把它们都看做是和它们最接近的整百、整千、整万…、的数,计算出结果后,再减去多加的部分。
课后小结
这节课你学会了什么呢?
a、这节课我们学习了加法运算律和加法结合律
用字母表示为a+b=b+a;a+b+c=a+(b+c)
b、数学运算时要选择简便运算方法,在加法算式中,当某些数可以凑成整十,整百数或者多个相同数时,运用加法交换率或者加法结合律改变式子的运算顺序,可以使运算更方便。
课后习题
1、计算下列算式
138+227+173 69+406+94
答案:138+227+173 69+406+94
= 138+(227+173)= 69+(406+94)
=138+400 =69+500
=538 =569
2、一根钢丝,第一次用去187米,第二次用去145米,这时还剩下113米,这根钢丝全长多少?
答案:187+145+113
=(187+113)+145
= 300+145
= 445(米)
答:这根钢丝全长445米
板书
加法运算律
加法交换律加法结合律
a+b=b+a;a+b+c=a+(b+c)
善于发现简单法,计算准确快又好
数与运算的教案篇2
教学内容
义务课程标准实验教科书(西南师大版)四年级(下)第17~18页例1~2,练习四第1题。
教学目标
1.经历在计算和解决问题的具体情景中探索发现乘法交换律、结合律的过程。
2.理解并掌握乘法交换律和结合律,初步能用这两个运算律解释计算的理由。
3.体验数学与日常生活密切相关,培养学生自主探索数学知识和应用数学知识解决简单实际问题的能力。
教学重点
在具体情景中探索发现乘法交换律、乘法结合律。
教学过程
一、 创设情景,探索新知
1.教学例1
出示例1图,学生独立列式解答,然后在小组中互相交流。
板书:9×4=36(个),4×9=36(个)。
学生观察板书,思考:这两个算式有什么特点?
板书:9×4=4×9。
教师:你还能写出几个有这样规律的算式吗?
板书学生举出的算式。
如:15×2=2×15
8×5=5×8 ……
教师:观察这些算式,你发现了什么?
学生1:两个因数交换位置,积不变。
学生2:这就叫乘法交换律。
教师:你能用自己喜欢的'方式表示乘法交换律吗?(学生独立思考后交流)
教师:如果用a、b表示两个数,这个规律可怎样表示呢?(a×b=b×a)
2.教学例2
出示例2情景图,口述数学信息和解决的问题。
学生独立思考,列式解答。
然后在小组中交流解题思路和方法。
全班汇报,教师板书。
(8×24)×68×(24×6)=192×6=8×144=1152 (户)=1152 (户)
学生对这两种算法进行观察、比较,有什么相同点和不同点?
板书: (8×24)×6=8×(24×6)。
出示下面的算式,算一算,比一比。
16×5×2= 16×(5×2)= 35×25×4=
35×(25×4)= 12×125×8= 12×(125×8)=
观察算式,有同样的特点吗?每排的两个算式的结果相等吗?学生独立计算,验证自己的猜想,全班交流。
板书:16×5×2=16×(5×2) 35×25×4=35×(25×4)43×125×8=43×(125×8)谁能说出这几组算式的规律?
学生1:每个算式只是改变了运算顺序。
学生2:每排左、右两个算式计算结果相等。
学生3:三个数相乘,先算前两个数的积或者先算后两个数的积,值不变。
教师:谁知道这个规律叫什么?
教师板书:乘法结合律。
教师:如果用a、b、c表示3个数,可以怎样表示这个规律?
教师板书:(a×b)×c=a×(b×c)。
教师:这个规律就叫乘法结合律。
小结:同学们,我们一起总结出了乘法交换律和乘法结合律,下面看同学们会不会用。
二、课堂活动
1?练习四第1题:学生独立完成,全班交流,说出依据。
2?连线。
(学生独立完成)
23×15×217×(125×4)17×125×439×(25×8)39×25×823×(15×2)
三、课堂小结
今天这节课你都有哪些收获?还有什么问题?
数与运算的教案篇3
本单元在分数四则计算和简单应用的基础上,主要教学分数四则混合运算和稍复杂的求一个数的几分之几是多少的实际问题。这部分内容是五年级教学的分数知识的综合、提高和总结,对掌握和应用分数知识有很大的影响。在内容的编排上有以下几个特点。
第一,教学计算,例题的内容容量很大。例1教学分数四则混合运算,包括按运算顺序计算和应用运算律简便计算。在这道例题中,既要把整数四则混合运算的运算顺序迁移过来,还要理解整数的运算律在分数中同样适用。把按运算顺序计算和应用运算律简便计算有机结合起来,把口算和笔算结合起来,组建四则混合运算的认知结构,有益于理解和掌握计算知识,形成实实在在的计算能力。
第二,教学解决实际问题,例题的编排细致。本单元解答稍复杂的求一个数的几分之几是多少的实际问题,一般列综合式计算。提出这个要求有两点原因:首先是前面刚教学了四则混合运算,学生具备列综合算式的能力。更重要的是,六年级(下册)列方程解答稍复杂的百分数应用题,要以现在的综合算式的数量关系为依托。
教材里稍复杂的求一个数的几分之几是多少的实际问题都是两步计算的问题,这些实际问题的数量关系是教学重点,也是难点。为此,编排了两道例题。例2及练一练都是先求总数的几分之几是多少,再求总数的另一部分是多少。例3及练一练都是先求一个数的几分之几是多少,再求比这个数多(少)几的数是多少。两道例题循序渐进地引导学生把第三单元里学到的求一个数的几分之几是多少这个数量关系与实际生活中的其他数量关系联系起来,提高解决实际问题的能力。
第三,不教学稍复杂的分数除法问题。传统教材教学分数乘法应用题之后还教学分数除法应用题,而且把除法应用题与乘法应用题对称编排。本单元只编排分数乘法问题,不教学除法问题,要突出稍复杂的求一个数的几分之几是多少的问题的数量关系。因为分数乘法问题在日常生活中比较常见,它的数量关系、解题思路能迁移到稍复杂的`百分数问题中去。
一、 一题两解既含运算顺序,又含运算律的内容。
例1求做两种中国结一共用的彩绳数量,由于这个实际问题具有特殊性(两种中国结的个数相同,两种中国结每个用彩绳的米数不同),所以它有不同的解法。教材充分利用这一特殊性,让学生按不同的思路列综合算式解答,能有两个收获:第一个收获是体会分数四则混合运算的运算顺序。算式2/518+3/518的思路是,先分别求出两种中国结各用彩绳多少米,因此列出的算式要先算乘法。算式(2/5+3/5)18的思路是,先求出两种中国结各做一个要用彩绳的米数,这正是在算式里加括号的目的。所以,计算有括号的算式,要先算括号里面的。类似上面的那些体会,在教学整数四则混合运算时曾经有过。教学分数四则混合运算,再次体会运算顺序的合理性、必要性和可操作性是认知的需要。而且,获得这些体会并不困难。第二个收获是两种解法的结果相同,不但相互印证解答正确,还为理解运算律创造了具体的背景。
在教学运算顺序时还要注意两点: 一是让学生看着列出并计算的两道综合算式,说说分数四则混合运算的运算顺序,使解决实际问题得到的体会成为十分清楚的数学知识;二是引导学生回忆整数四则混合运算顺序,并和分数四则混合运算顺序相比较,看到两者的相同,使它们和谐结合,从而对运算顺序形成更具概括性的认识。
比较两种解法之间的联系是感受运算律的存在,比较哪种方法简便是引导简便运算。需要说明的是,第三单元计算分数连乘,把各个乘数的分子、分母交叉约分,已经在应用乘法交换律和结合律,所以本单元着重体会乘法分配律。教学时要处理好三点:首先是观察、讲述两种解法的联系,要让学生说说怎样把其中一道综合算式改写成另一道综合算式,加强对乘法分配律的理解和表述。然后是回忆分数连乘,让学生感受以前的计算已经应用了乘法的另两条运算律。如139/10,交叉约分时应用了乘法结合律,只是没有写出1/4(110);又如253/4,约分时应用了乘法交换律,只是241/5这个过程没有写出来。最后才总结出整数的运算律在分数运算中同样适用,即分数乘法也存在交换律、结合律、分配律,运算律也能使一些计算变得简便。
应用乘法分配律进行简便运算,例1仅作些引导,要通过练习才能掌握。和整数、小数范围内应用乘法分配律简便计算相比,这里的计算往往有两个特点:一是隐蔽,如6656/7。这是一道两数之积减两数之商的题,似乎与运算律对不上号。如果把分数除法转化成分数乘法,就显露出两个乘法算式有相同的因数,具备应用乘法分配律的必要条件。二是易混,如44/5+4/54。粗糙地看这道计算题,它的两道除法算式似乎很有联系,稍不留心就陷入简算误区。只有细心地把分数除法变成乘法,才会明白这道题不适宜应用分配律。本单元教材设计简便运算的练习题,注意了这两个特点。另外,还把按运算顺序计算和应用运算律简便计算混合编排,如第92页第2题。让学生设计各道题的算法,是培养计算能力的一种有效手段,也是促进思路灵活、反应灵敏的一种训练。
二、 数形结合教学较复杂问题的数量关系。
例2和例3是稍复杂的分数乘法应用题,它们都含有求一个数的几分之几是多少的数量关系。说它们稍复杂,是因为还分别含有其他的数量关系,有多种解法。就例2来说,可以根据运动员总人数减男运动员人数得女运动员人数列出算式459;也可以根据女运动员人数占运动员总人数的(19)列出算式45(19)。再说例3,可以根据去年班级数加今年比去年多的班级数得今年的班级数列出算式24+241/4;也可以根据今年的班级数是去年的(1+1/4)列出算式24(1+1/4)。教学这两道例题,教材里只出现前一种解法。因为这种解法的数量关系,是实际问题中最基本的数量关系,学生比较熟悉,已经掌握,容易寻找。而且,这些数量关系还是列方程解答其他分数、百分数应用题的基本关系,在以后的教学直至初中数学里经常应用。至于后一种解法,发展了对一个数的几分之几的认识,从一个已知的分率联想了其他的分率。如果学生能够独立想到,并且喜欢这样列式,应该是允许的。教材不出现后一种解法,不把它教给学生,是着眼今后,突出重点,减轻负担。
两道例题都利用线段图直观表达数量关系,帮助学生形成解题思路。例2已经画出了表示六年级参加学校运动会的人数的线段,学生在线段上表示男运动员占5/9的时候,会想到线段的另一部分表示的是女运动员人数,从而得到先算男运动员有多少人的思路。例3已经画出表示去年班级数的线段,要求学生继续画表示今年班级数的线段,从中体会今年班级数比去年多1/4的含义,看清今年班级数与去年班级数之间的关系,想到可以先算今年增加了几个班。教材引导学生画线段图,其目的不仅是帮助理解例题的数量关系和解题步骤,还要积累画线段图的体会和经验。以后解决实际问题,尤其是完成练一练和练习十六里的习题时,若有需要,能主动地通过画图帮助思考。为此,要加强画线段图的教学。首先让学生理解,先画出表示运动员总人数的线段和表示去年班级数的线段,才能继续表示男运动员人数和今年的班级数。这是分析男运动员占5/9以及今年班级数比去年增加1/4这两个分数的意义,得出的画图思路。其次让学生理解,男运动员是运动员总人数的一部分,可以表示在运动员总人数的线段图上。而今年的班级数与去年的班级数之间是比较关系,不存在包含与被包含的关系,因此各画一条线段表示它们。最后让学生看着画成的线段图,复述实际问题的题意,从中获得解题思路,体会线段图是表示数量关系的手段,是解决实际问题的工具。
练习十六里设计了一些题组,通过解题和比较,能进一步理解数量关系,明确解题思路。第4题的两问是连续的,先求得已经铺设的米数,就能继续求还要铺设的米数。比较这两问,能明白前一问里求840米的3/5是多少,后一问是从电缆总长里去掉已经铺设的米数。第8题的两小题分别是面粉比大米少1/5和面粉比大米多1/5,比较两个分数的意义,能理解两个问题的解法有何不同,以及为什么不同。第12题的两小题里都有1/4,一道题里是用去1/4,另一道题里是还剩1/4。因此,算式54在两道题里的意义不同。虽然两题都是求钢条还剩下的米数,解法不同的道理是很清楚的。第13题里设计了两个意义不同的1/8,其中一个1/8表示的是实际用煤节约的吨数相当于计划用煤吨数的份额,另一个1/8是实际用煤节约的吨数。由于两小题里实际用煤节约的吨数直接已知或不直接已知,求实际用煤吨数的方法自然就不同了。
数与运算的教案篇4
数学目标
1.使学生掌握分数四则混合运算的运算顺序,并能正确计算分数四则混合式题.
2.提高学生的逻辑推理能力和计算能力.
3.培养学生认真计算、检验的良好学习习惯.
教学重点
掌握分数四则混合运算的运算顺序.
教学难点
培养学生良好的计算、检验的学习习惯,提高计算的正确率.
教学过程
一、复习引新
(一)口算
(二)说出下列各题的运算顺序.
169-722 35-〔2.34(7.2-5)〕
1.教师提问:整数四则混合运算的'顺序是什么?
(1)一个算式里,如果只含有同一级运算,按照从左往右的顺序进行计算.
(2)一个算式里,如果含有两级运算,要先算第二级运算,再算第一级运算.
(3)一个算式里,如果有括号,要先算小括号里面的,再算中括号里面的.
2.教师谈话引入:分数四则混合运算的顺序是怎样的呢?今天我们一起学习分数四则混合运算.
板书课题:分数四则混合运算.
二、讲授新课
(一)教学例1
例1. (课件演示:分数混合运算例1)
1.教师提问:这个算式里含有几级运算?应该先算什么?再算什么?
2.学生尝试解答.
3.集体订正.
(二)教学例2
例2. (课件演示:分数混合运算例2)
1.请学生分组说一说这道题的运算顺序.
计算时,要先算小括号里面的,再算中括号里面的最后算括号外边的.
2.学生独立解答
=
=
=3
(三)先说出运算顺序,再计算.
(四)总结归纳
分数四则混合运算的顺序与整数四则混合运算的顺序相同,我们可能觉得不难,但却很容易算错,所以我们要养成好的计算习惯:要审清运算符号,确定好运算顺序,不丢数、不抄错数,认真计算每一步.
数与运算的教案篇5
教学内容:
p.35、36
教学目标:
1、让学生联系解决生活实际问题的过程感悟、理解并掌握不含括号的三步混合运算的运算顺序,能正确地进行计算,并能用以解决三步计算的实际问题。
2、让学生在学习活动中增强类比迁移能力和抽象概括能力,获得成功体验,感受学习数学的乐趣。
重点难点:
理解三步计算运算顺序;运用三步计算解决实际问题。
教学准备:
光盘
教学过程:
一、学习例题
1、很多同学都喜欢下棋,我们一起去看看王老师买棋时遇到了什么数学问题
演示例题,指名说说图上的信息
买3副中国象棋和4副围棋。象棋的单价是12元,围棋的单价是15元
读问题:她一共要付多少元?
这是一道购物的实际问题,遇到这类问题你马上会想到哪个基本数量关系式?
复习:单价数量=总价
2、学生尝试列式,并交流
(1)分步列式:123=36元 154=60元 36+60=96元
(2)综合:123+154
(可能还有):(12+15)(3+4)
讲评:指着分步列式,让学生明确每一步算式的意思。
比较两个综合算式,让学生说说下面的算式为什么是错的?它这样算出的结果表示什么?
明确:要用象棋的单价乘象棋的数量等于象棋的总价,围棋的单价乘围棋的数量等于围棋的总价;分别算出两样棋的总价加起来就是一共要付的钱。
3、运算顺序
123+154 123+154
=36+154 =36+60
=36+60 =96(元)
=96(元)
比较这两种运算顺序,它们都对吗?哪个更好?为什么?
指出:这是一个三步混合运算,有乘有加,先算乘,即分别先算象棋和围棋的钱。
4、学生完成试一试:150+12065
做完后交流,可能会有个别学生先算乘,如果有可请学生说说正确的运算顺序,乘除在一起的时候,谁在前谁先算。
5、结合两题引导学生总结:在没有括号的算式里,有乘、除法和加、减法,要先算乘、除法。
二、巩固练习
1、学生独立做在自备本上
802+764
2406-217
45-2034
51-363+25
指名板演再结合具体问题交流。
2、下面的运算对吗?把不对的改正过来。(题略)
建议:做混合运算,要先观察该题的运算符号,可把先算的步骤划线表示,然后再算。
3、比一比,你能说出原因吗?
2530+2520
84040-40040
25(30+20)
(840-400)40
第一组题可引导学生结合乘法意义来说,或是结合具体问题来举例说明。
三、解决实际问题
1、(第4题)读题后让学生解释人均居住面积的含义和求法,并列出综合算式。
2、(第5题)分析我们组比你们两组的总人数多6人,指名说说你们两组的总人数怎么算?
3、(第6题)比较两小题,说说两题的联系。
4、把这3道联系实际问题做在作业本上。
数与运算的教案篇6
温馨提示:
1. 部分包含数学公式或ppt动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3215808601
?教学内容】课本第9-11页例1,课堂活动以及练习三第1~5题。
?教学目标】
1、在计算与解决问题的具体情景中体会乘除法的互逆关系和乘除法各部分间的关系。
2、经历探索发现乘与除互逆关系和乘除法各部分间关系的过程,并有成功探索的体验,培养学生的比较、归纳概括能力。
3、能运用乘除法的关系进行验算和解决简单的实际问题。
?教学重点】在计算和解决问题的情景中探索乘除法的互逆关系和乘除法各部分间的关系。
?教学过程】
一、创设情境,激发兴趣
1、教师出示图,谈话引入:同学们,你们去过游乐园吗?今天老师和同学们一起到游乐园玩一玩。请同学们仔细观察游乐园情景图,你都获得了哪些数学信息?
(1)学生说出自己选择的数学信息和数学问题,并列出算式解答。教师板书算式:12×5×4=24012×4=4848÷4=1248÷12=4……
(2)学生认真观察算式,你有什么发现?(3)同学们观察得好,你能观察出乘除法各部分间有什么关系吗?今天我们一起来探讨乘除法之间的关系。板书课题:乘除法的关系
二、探究新知
1、教学例
1。教师:刚才我们从情景图中知道:每棵树上挂了4个灯笼。12棵树上挂了48个灯笼。通过这3个信息列出了3道算式,请同学们仔细观察这3道算式。12×4=48 48÷4=12 48÷12=4
(1)结合具体情景,让学生说说每个数所表示的意思和每个算式解决的问题。
(2)看一看除法和乘法之间有什么关系?学生分组讨论,全班交流。 说说每个算式各部分的名称,再比较上面3个算式,你有什么发现?(独立思考,小组讨论,做好记录)各小组汇报结果,教师板书。因数×因数=积 一个因数=积÷另一个因数 被除数÷除数=商除数=被除数÷商 被除数=商×除数已知两个因数的积与其中的一个因数,求另一个因数,用除法。除法是乘法的逆运算。教师:议一议,在有余数的除法里,被除数与商,除数,余数之间有什么关系?学生独立思考后,小组讨论,再汇报。
2、讨论。0不能做除数“0不能做除数”你知道这是为什么吗?先计算下列各题:(1)0÷4=0÷5=0÷134=(2)0÷0=6÷0=学生猜一猜这两组算式的商是几?说出理由。(引导学生根据乘、除法之间的关系来说明)
三、课堂活动
教科书第10页课堂活动。师生对口令,然后同桌互对口令。
四、巩固练习
1、练习三第1题,学生独立做在作业本上。
2、练习三第2题和3题,学生独立完成,全班反馈,说出依据。
五、课堂小结
今天这节课我们学习了什么知识,你都学到了什么?你还有什么问题?教学反思:第二课时乘除法的关系(二)
?教学内容】 课本第10页“议一议”,练习三第6~9题。
?教学目标】
1、初步知道整除,能判断简单的整除问题。
2、在区别“除尽”与“整除”的过程中,培养学生归纳、概括的能力。
?教学重难点】经历从除法中整理出“整除”的过程,能判断简单的整除问题。
?教学过程】
一、复习导入
(1)口算。(教师板书结果)6÷2=39÷2=15÷12=250÷50=26÷13=25÷7=160÷1=0÷9=76÷21=
(2)观察口算题及计算结果,你有什么发现?在小组里议一议。
二、教授新知教学“议一议”。
(1)全班按小组汇报交流发现的情况。(算式都是整数除以整数计算结果有“除尽”和“除不尽”两类,或有“有余数”和“没有余数”两类……教师将学生发现的情况一一板书出来让学生讨论,同时注意引导得出“整除”来)
(2)教师小结出整除的意义。像6÷2=3,0÷9=0……这些除法算式都没有余数。6÷2=3我们就说6能被2整除,或者说2能整除6。再让学生尝试说说:250÷50=,26÷13=,谁能被谁整除。
(3)再次引导学生讨论:在表示一个数能被另一个数整除的算式中,被除数、除数、商有什么特点?每个学生举出几个表示整除的除法算式。
(4)让学生思考“议一议”的题目。学生先独立思考,然后在小组中互相说一说,最后全班反馈。重点讨论25÷4=6......1。让学生写出对应的乘法算式。
(5)教师小结:被除数等于除数乘商再加上余数,除数=(被除数-余数)÷商。
三、课堂活动
1、同桌对口令,一人说一个除法算式,另一人说出对应的乘法和除法算式,完成后,角色互换。
2、练习三第7题:学生独立完成,点名回答,再集体订正理由。
3、练习三第8题:学生先独立试做,订正时抽学生说说依据。
4、练习三第6题。学生根据题目情境图中的信息,提出并解决问题。
四、拓展练习
练习三思考题:学生独立思考后试做,对有困难的同学可在小组中商量,全班汇报。
五、课堂小结
这节课你都学到了什么?还有什么问题吗?教学反思:第三课时乘法运算律及简便运算(一)
?教学内容】课本第12--13页例1~2,练习四第1题。
?教学目标】
1、经历在计算和解决问题的具体情景中探索发现乘法交换律、结合律的过程。
2、理解并掌握乘法交换律和结合律,初步能用这两个运算律解释计算的理由。
3、体验数学与日常生活密切相关,培养学生自主探索数学知识和应用数学知识解决简单实际问题的能力。
?教学重点】在具体情景中探索发现乘法交换律、乘法结合律。
?教学过程】
一、创设情景,探索新知
1、教学例1。出示例1图,学生独立列式解答,然后在小组中互相交流。板书:9×4=36(个),4×9=36(个)。学生观察板书,思考:这两个算式有什么特点?板书:9×4=4×9。教师:你还能写出几个有这样规律的算式吗?板书学生举出的算式。 如:15×2=2×158×5=5×8……教师:观察这些算式,你发现了什么?教师:你能用自己喜欢的方式表示乘法交换律吗?(学生独立思考后交流)教师:如果用a、b表示两个数,这个规律可怎样表示呢?(a×b=b×a)2、教学例2。出示例2情景图,口述数学信息和解决的问题。学生独立思考,列式解答。然后在小组中交流解题思路和方法。全班汇报,教师板书。(6×24)×86×(24×8)=144×8=6×192=1152(户)=1152(户)学生对这两种算法进行观察、比较,有什么相同点和不同点?板书: (6×24)×8=6×(24×8)。出示下面的算式,算一算,比一比。16×5×2= 35×25×4=12×125×8= 16×(5×2)= 35×(25×4)= 12×(125×8)= 观察算式,有同样的特点吗?每排的两个算式的结果相等吗?学生独立计算,验证自己的猜想,全班交流。板书:16×5×2=16×(5×2)35×25×4=35×(25×4)43×125×8=43×(125×8)谁能说出这几组算式的规律?教师:谁知道这个规律叫什么?教师板书:乘法结合律。教师:如果用a、b、c表示3个数,可以怎样表示这个规律?教师板书:(a×b)×c=a×(b×c)。教师:这个规律就叫乘法结合律。小结:同学们,我们一起总结出了乘法交换律和乘法结合律,下面看同学们会不会用。
二、课堂活动
1、练习四第1题:学生独立完成,全班交流,说出依据。
2、同桌互动:一人写算式,一人说出对应的运算律。
三、课堂小结
今天这节课你都有哪些收获?还有什么问题? 教学反思:第四课时乘法运算律及简便运算(二)
?教学内容】课本第13页例3,课堂活动第2题和练习四第2~6题和思考题。
?教学目标】
1、进一步理解并掌握乘法交换律和结合律,并能运用这两个运算律进行简便计算。
2、培养学生灵活运用所学知识解决实际问题的能力。3、让学生在老师的引导下,经历克服学习困难的过程,体验数学学习的成就感。
?教学重难点】灵活运用乘法交换律和乘法结合律进行简便计算。
?教学过程】
一、复习旧知,引入新课
1、回忆上节课中所学的乘法交换律和乘法结合律并用自己的语言加以叙述。
2、填空。a×b=b×____(a×____)×c=a×(____×____)我们学习了乘法运算律,这节课我们一起运用乘法运算律进行计算。二、探索新知1、学习例3。出示例3,算一算,议一议。61×25×48×9×125教师:观察每个算式中的因数之间有什么特点?可以运用运算律进行简便计算吗?(学生观察思考,独立计算)全班汇报,教师板书:(1)①61×25×4=61×100=6100②61×25×4=1525×4=6100③……(2)①8×9×125=72×125=9000②8×9×125=9×1000=9000③…… 小组讨论:每题都有几种算法,你认为哪种算法最简便?为什么?运用乘法交换律和结合律进行简便计算时要注意什么?全班交流汇报。教师小结:运用乘法运算律进行简便计算,它的核心就是“凑整”。往往可以把两个或几个数结合在一起乘起来得到整十、整百……有时还可能需要把一个数分解成两个数,再与另外的数结合相乘得到整十数、整百数……总之使计算变得简单。这里的设计是让学生讨论一题的多种计算方法,你认为哪种比较简便,为什么简便,来获得简便计算的感受,是可取的。]三、课堂活动1、课堂活动第2题:先让学生说一说怎样计算简便,并说出依据,再完成在课本上。2、练习四第3题:学生独立完成(连线)后反馈。
3、练习四第5题。怎样简便就怎样算,学生独立完成,老师指名板演。集体订正。4、练习四第11题。学生观察图中信息,然后抽学生提出问题,教师板演在黑板上。其余学生判断。最后让学生独立解决在课堂作业本上,不得少于3个问题。注意:随时提醒学生观察算式中数据的.特点,并应用简便方法进行计算。
四、拓展练习思考题:
引导学生抓住突破点:一是1~9各数字在算式中只出现一次;二是算式中积的个位数字是2。根据这两个信息可以想到两个因数个位上的数字只能分别是3和4,继续分析便可解决此题。
五、课堂作业
练习四第6、7、8题。
六、课堂小结
这节课主要学习了什么知识?你还有什么问题吗?教学反思: 第五课时乘法运算律及简便运算(三)
?教学内容】课本第16页例4,课堂活动第1题和练习五第1、2题。
?教学目标】
1、经历在解决数学问题的情境中探索发现乘法分配律的过程。
2、理解并掌握乘法分配律,并能运用乘法运算律进行简便计算。3、在解决数学问题中培养学生一题多解的发散思维能力,通过发现运算律培养探索、概括能力。【教学重、难点】探索发现乘法分配律,理解并能运用乘法运算律进行简便计算;对乘法分配律进行正向和逆向的理解。
?教学过程】
一、创设情景,探索新知出示例4。
(1)出示问题情景,解决问题。你从情景图中获取了哪些数学信息?要解决“一共需要多少元?”该怎样列式计算?(学生口答信息,然后独立列式计算)全班汇报解题思路和方法。教师板书:(40+20)×1440×14+20×14=60×14=560+280=840(元)=840(元)
(2)比较两种解法,发现两种解法的相同点和不同点,并举出生活中的类似例子。(小组讨论,全班交流)教师板书:(40+20)×14=40×14+20×14
(3)在计算中比较并发现乘法分配律。算一算,比一比。(3+2)×35=3×35+2×353×(4+6)=3×4+3×6(13+12)×4=13×4+12×4比较每排的两个算式有什么关系?每排的两个算式的计算结果相等吗? 学生独立计算验证自己的猜想。(小组讨论,全班交流)板书:(3+2)×35=3×35+2×353×(4+6)=3×4+3×6(13+12)×4=13×4+12×4教师:谁还能举出符合这个规律的例子?(学生举例)教师:谁能用自己的话来表达这几组算式所反映的规律?(学生回答)教师小结:两个数的和与一个数相乘,可以把这两个数分别与这个数相乘,再将两个积相加,这叫乘法分配律。
(4)如果用a,b,c表示3个数,可以用怎样的式子表示乘法分配律呢?(学生独立写出,然后全班交流)教师整理并板书:(a+b)×c=a×c+b×c或a×c+b×c=(a+b)×c
二、课堂活动
1、课堂活动第1题:先让学生独立算一算,对有困难的也可先在小组中议一议。最后让学生说一说自己是怎么算的?能说明乘法分配律吗?
2、练习五中第1题:学生独立做在书上,订正时让学生说说运用的是什么运算律?先做,再议一议,最后与全班同学交流。
三、课堂小结
这节课我们学习了什么?你都有些什么收获?你还有什么问题?教学反思:第六课时乘法运算律及简便运算(四)
数与运算的教案篇7
教学内容:
教科书第39—40页。
教材分析:
这部分内容主要让学生在解决实际问题的过程中认识中括号,理解并掌握含有中括号的三步混合运算的运算顺序,学会正确地计算。例题安排了三个层次的学习活动。第一层次,从学生熟悉的问题情境中提出问题要求学生立解答,引导学生交流自己的解题过程。第二层次,告诉学生要先算出美术组的人数,列综合算式时,就要用到中括号,引导学生列出正确的综合算式,并按顺序完成计算。第三层次,引导概括含有中括号的混合运算的运算顺序,把学生在学习过程中积累的经验上升为数学结论。
教学目标:
1、让学生联系解决实际问题的过程认识中括号,以及中括号在混合运算中的作用,理解并掌握含有中括号的三步混合运算的顺序,并能正确地进行运算。
2、让学生经历认识和理解混合运算的运算顺序的过程,进一步体会数学与生活的联系,产生自主探索的兴趣,获得发现数学结论的成功体验。
3、培养学生立解决问题的意识和认真、严谨的学习习惯。
教学重点:
掌握含有中括号的混合运算的运算顺序。
教学难点:
理解中括号的作用是改变运算顺序。
教学准备:
挂图、小黑板。
教学过程:
一、复习旧知,引入新课
1、观察算式,说说下面两题的运算顺序。
小黑板出示:120÷6+4×2120÷(6+4)×2
指名回答,并说出理由,集体口头解答。
2、小结计算顺序。(小黑板出示)
回忆:在没有括号的算式里,有乘、除法和加、减法,要先算乘、除法。
算式里有小括号,要先算小括号里面的。
提问:比较这两题,你还发现了什么?
总结:括号能改变算式的运算顺序。
[设计意图:巩固前两课所学的混合运算的运算顺序,为新知的学习做准备]
二、自主探索,学习新知
1、创设情境,整理信息。
谈话:学校艺术节快到了,每个兴趣小组正在进行紧张的练习,让我们一起去看一看!(出示2个小挂图)
提问:从图中你了解到哪些信息?(指名汇报信息)
根据回答板书相关信息:航模组:男生8人、女生6人
美术组:是航模组的2倍
谈话:请你列综合算式,算出美术组有多少人。
指名板演,并说说每一步算的是什么。
2、提出问题,分步解答。
继续出示挂图:合唱组及问题。
板书:合唱组:84人
提问:要我们解决的问题是——?
提问:合唱组的人数是美术组的几倍,你想到了哪个数量关系式?
板书:合唱组的人数÷美术组的人数=几倍
提问:解决这个问题,关键要先求出什么?(美术组的`人数)
谈话:刚才我们已经算过了,只要再加一步。
板书:84÷28=3(口答)
3、尝试列综合算式。
谈话:刚才,我们分步解答了这个问题,先算出了——(美术组的人数),然后用——(合唱组的人数÷美术组的人数),现在你能不能把这两个算式合并成一个综合算式,在自备本上试试看,只列式。
(学生尝试,教师巡视,指名用不同方法的学生板演)
4、说明:数学上规定,这个算式中已经有小括号了,再添加括号,就要用到中括号,(出示方法三:84÷[(8+6)×2])。
谈话:像这样的括号就是中括号。伸出手来,一起跟我写一遍(描)。
让学生尝试加中括号:请你在你的综合算式里添上中括号。
揭示课题:今天这节课,我们就要来研究含有中括号的混合运算。(板书课题)
谈话:这时的算式中有小括号,又有中括号,应该怎样计算呢?同桌互相说说这题的运算顺序。
有信心试一试吗?(立完成计算,最后集体校对)
5、介绍递等式中一步一步脱式的过程和书写的格式要求(等号位置,小括号算好后脱掉,移下来的是中括号)。
提问:你觉得第一步应该先算?也就是要算出——(航模组的人数)。
84÷[(8+6)×2]
=84÷[14×2]
=84÷28
=3
谈话:口答。有错的同学请你订正一下。
谈话:回顾头来看一下,这里的两个算式,一个只有小括号,一个又添加了中括号,那这个中括号在这里起到了什么作用?
总结:对呀,中括号和小括号一样,也能改变题目中的运算顺序。
谈话:在一个算式里,既有小括号又有中括号,应该按什么顺序运算?(学生尝试概括运算顺序)
6、总结含有中括号的混合运算的运算顺序。
(小黑板出示:在一个算式里,既有小括号,又有中括号,要先算小括号里的,再算中括号里面的)
谈话:打开书39页,请你把书上的空白填一下,填好了和黑板对照一下。
设计意图:把例题分解组合成两问的题目,利于以旧引新,充分发挥旧知在学习新知中的“脚手架”作用,也有利于学生在总体上把握题目数量之间的关系和结构,使教学直指本课的要点含有中括号的混合运算。在解决实际问题的过程中掌握运算顺序,能使学生对中括号的作用以及运算顺序有更深的了解。
三、巩固练习,不断深化
1、做“想想做做”第1题。(重点说运算顺序)
同桌相互说说每题的运算顺序,立完成,集体评讲。
2、做“想想做做”第2题。(比一比,算一算)
(1)观察每组的三道题,说说他们的相同和不同之处。
(同桌活动,每人说一组题。指名说:重点讨论同样的数、符号,为什么运算顺序会不一样)
(2)男、女生各计算一组,交流计算过程和结果。
总结:看来,虽然每组的三道题目数据一样、运算符号一样,但因为有了小括号和中括号,所以运算顺序就不一样了,结果也不一样了。
(还可让学生说说体会,仔细看题、细心计算的习惯培养)
3、做“想想做做”第3题。
(1)观察情境图,理解图意。
(2)理解题意后,立完成。
(3)交流时说说是怎么算的。
设计意图:围绕本课的教学重点,让学生在比比算算的过程中进一步体会有中括号的混合运算的运算顺序,同时把相关内容进行了整理,使学生对混合运算的顺序有更全面的认识。
四、拓展知识,评价总结
1、谈话:每一个数学知识、任何数学方法的背后,总是凝结着人类漫长的探索过程。一个个括号的产生,也经历了漫长的发展历程,凝聚着人类无穷的勤劳和智慧。阅读“你知道吗?”
学生阅读,交流:从中你知道了什么?
提问:这节课我们学习了什么?
(1)为什么要引入中括号?
(2)中括号、小括号的作用是什么?
(3)含有中括号的混合运算的顺序是什么?
2、根据运算顺序添上小括号或中括号。
(1)32×800-400÷25先减再乘最后除。
(2)32×800-400÷25先除再减最后乘。
(3)32×800-400÷25先减再除最后乘。
数与运算的教案篇8
教学目标:
1、使学生结合解决实际问题的过程,理解并掌握分数四则混合运算的运算顺序,并能按运算顺序正确进行计算,主动体会整数运算律在分数运算中同样适用,并能根据运算律和运算性质进行一些分数的简便计算。
2、使学生在理解分数四则混合运算的运算顺序以及应用运算律进行分数简便计算的过程中,进一步培养观察、比较、分析和抽象概括的能力。
3、使学生在学习分数四则混合运算的过程中,进一步积累数学学习的经验,体会数学学习的严谨性和数学结论的确定性。
重点难点:
分数四则混合运算的`顺序及理解整数运算律在分数运算中同样适用。
课前准备:
教学过程:
一、布置要求,引导预学
(1)做书上第80页“练习十五”第1题
(2)说出下列各题的运算顺序。
199-68×2 38-[2.44×(8.5-5)]
(3)整数四则混合运算的顺序是什么?
a、一个算式里,如果只含有同一级运算,按照( )顺序进行计算;
b、一个算式里,如果含有两级运算,要先算( ),再算( );
c、一个算式里,如果有括号,要先算( ),再算( )。
二、预习反馈,诊断查学
课中进行预习反馈,教师根据学生的反映有针对性地调整教学。
三、目标引领,探究导学
(一)创设情境。
1、出示教科书第80页的例题图。提问:要求“两种中国结各做18个,一共用彩绳多少米?”这个问题,可以怎样列式?
要求学生自主列出综合算式,并尽可能列出不同的综合算式。
2、集体交流。教师根据学生的回答板书算式。
25 ×18+35 ×18 (25 +35 )×18
追问:列式时你是怎么想的?
3、指出:在一道有关分数的算式中,含有两种或两种以上是运算,统称为分数四则混合运算。这两道算式都属于分数四则混合运算。(板书课题)
(二)教学分数四则混合运算的运算顺序。
1、谈话:根据以上计算整数、小数四则混合运算的经验,想一想,分数四则混合运算的运算顺序是怎样的?
你会计算上面这两道式题吗?
学生分别计算,并指名板演。
2、提问:这两道式题的计算结果相等吗?运算顺序呢?第一道算式先算什么?第二道算式呢?
3、小结:分数四则混合运算的运算顺序与整数四则混合运算的运算顺序相同,也是先算乘除,后算加减,有括号的要先算括号里面的。
4、做“练一练”第1题。让学生先说出运算顺序再计算,然后交流、订正。
(三)教学把整数的运算律推广到分数。
1、引导:我们再来仔细观察例1的两种解法。比较一下,这两种解法之间有什么联系?哪一种方法比较简便?你有什么想法?
通过交流明确:整数的运算律在分数运算中同样适用。我们在进行分数四则混合运算时,要恰当地应用运算律使计算简便。
2、做“练一练”第2题。先让学生独立计算,再讨论分别应用了什么运算律或运算性质?
四、巩固练习,反馈练学
1、做练习十第1题。
让学生按要求直接写出得数,再集体订正。
2、做练习十第2题。
让学生独立计算,再选择一两题要求说说运算顺序。
3、做练习十第3题。
让学生独立计算,然后说说每道题分别应用了什么运算律或运算性质。
4、做练习十第4、5题。
学生独立解答后,指名说说解题思路。
五、课堂总结,拓展思学
这节课你学会了什么?你有什么收获和体会?进行分数四则混合运算时应该注意什么?
板书设计:
分数四则混合运算
会计实习心得体会最新模板相关文章: